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As a part of the international human genome project, large-scale genomic maps 
of human and other model organisms are being generated. More recently, map- 
ping using various anchoring (as opposed to the traditional "fingerprinting") 
strategies have been proposed based largely on mathematical models. In all of 
the theoretical work dealing with anchoring, an anchor has been idealized as a 
point on a continuous, infinite-length genome. In general, it is not desirable to 
make these assumptions, since in practice they may be violated under a variety 
of actual biological situations. Here we analyze a discrete model that can be 
used to predict the expected progress made when mapping by random anchoring. 
By virtue of keeping all three length scales (genome length, clone length, and 
probe length) finite, our results for the random anchoring strategy are derived 
in full generality, which contain previous results as special cases and hence can 
have broad application for planning mapping experiments or assessing the 
accuracy of the continuum models. Finally, we pose a challenging nonrandom 
anchoring model corresponding to a more efficient mapping scheme. 
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1. I N T R O D U C T I O N  

A c o m p l e t e  set  of  o r d e r e d  D N A  c l o n e s  s p a n n i n g  t he  g e n o m e  o f  a n  

o r g a n i s m  p r o v i d e s  a ve ry  p o w e r f u l  t e m p l a t e  for  f u r t h e r  g e n o m i c  ana lys i s .  2 

1 Cold Spring Harbor Laboratory, P.O. Box 100, Cold Spring Harbor, New York 11724, U.S.A. 
2 A genome is a long chain of DNA molecule which contains all the genetic information of 

an organism. To analyze a genome, biologists often randomly cut the DNA into many small 
pieces by restriction enzymes and insert each piece into the DNA of a simple organism 
(called a vector), then maintain and duplicate (clone) these vectors inside bacteria host cells. 
A set of clones carrying random pieces of a large genome is called a library. By mapping, 
one orders the clone pieces in a library and finds the distances among them according to 
their original genomic positions. A clone may be thought of as a duplicate of a DNA 
fragment; those with relative distances determined according to their genome positions are 
called ordered clones. 
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It would reveal the relationship between physical and recombination dis- 
tances throughout the genome and, once aligned with the genetic map 3 of 
the organism, would greatly facilitate map-based cloning of genes for which 
only a mutant phenotype and linkage map position are known. Complete 
or nearly complete physical maps 4 of clones have already been constructed 
for genomes of Escherichia coli, (2) Saccharomyces cerevisiae, (3) and 
Schizosaccharomyces pombe. (11) Numerous efforts are underway to con- 
struct physical maps of considerably larger genomes, such as the human 
and mouse genomes. 

There are two major schemes used to order the clones. One is known 
as "fingerprinting," which consists in detecting overlapping clones using 
restriction fragment length patterns (called "fingerprints"); the other is 
known as "anchoring," which consist in detecting shared unique sequences 
(called "anchors"). 

Theoretical considerations of planning mapping projects based on finger- 
printing were published initially in this area by Lander and Waterman. (4) 
Analogous analyses for projects based on anchoring have also appeared 
recently.(5 7.1) In all these works dealing with anchoring, an anchor was 
idealized as a point on a continuous genome. This approximation is good 
when the size of the probes (a probe recognizes a specific anchor sequence; 
it is for our purpose synonymous to an anchor) is much smaller than the 
size of the clones. Recently, an approximate discrete analysis has also 
been published (8~ where the authors were not able to derive closed-form 
formulas for short genome length. Theoretically, it is desirable not to make 
these assumptions (zero-length anchors and a continuous, infinite-length 
genome) if we can still solve the problem. More importantly, in practice, 
these assumptions may sometimes break down. Although these assump- 
tions are applicable in many situations, we believe it is still useful to 
provide the exact results for those who may only want to map a particular 
segment of a genome (where the continuous approximation may not be 
applicable) or for those who use probes with length comparable to that of 
clones. 

From an experimental standpoint, mapping the genome will take place 
in two stages: first, by building islands of linked clones with all available 
probes, and second, by linking these islands into a contiguous map by 
bridging the gaps between them. The'theoretical analysis presented in this 
paper can answer some of the Statistical questions in the first stage of 

3 A genetic (linkage) map is a map of the relative positions of genetic loci on a chromosome, 
determined on the basis of how often the loci are inherited together. 

4 A physical map is a set of overlapping clones with distances measured by base pairs. 
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contig (island) building by random anchoring. Since the random anchoring 
scheme is inefficient experimentally, we shall also discuss a more efficient 
nonrandom model at the end. (9) 

2. E X P E C T E D  N U M B E R  O F  I S L A N D S  

It is assumed that a library of clones and collection of probes are 
generated independently, randomly, and uniformly from the genome of size 
G. Let c and s be the densities of the clones and the probes, respectively. 
Thus, c = N c / G  and s = N s / G ,  where N c and N, are the total number of 
clones and probes. If the lengths of clones and probes are denoted by L 
and M, then the parameters a (the redundancy of coverage) and b (the 
average number of probes contained in a random clone) are given by 
a = c L  and b = sM.  

First, we calculate the expected number of islands. For simplicity of 
notation, we define 

g - - 1 - c  and ~ - l - s  

We assume L >~ M. For a clone to be anchored, there has to be at least one 
probe with its entire length embedded within the clone. 

The number of islands is of course equal to the number of the left ends 
of islands. The event that there is a left end of an island starting (from 
the left to the right) at some arbitrary position 0 is characterized by the 
following: there is a clone starting at 0, the first probe should start at i for 
i = 0, 1,..., L - M, and there should be no clones starting to the left of 0 and 
anchored by the probe (see Fig. 1). Hence, the probability p an island starts 
at 0 is given by 

L--M 
p =  ~ ~1~ M ic~i s (1) 

i - -O  

Simple summation of the geometric series yields 

~L--M+I __~L--M+I 
p = cs (2) 

C--S 

i i + M - I  

I I 
0 i+L-1  

Fig. 1. 
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The expected number Nisland of island is given by Gp. It is clear from these 
results that the expected number of islands depends only on the relative 
length L - M  between the clones and the probes [see Eq. (2)]. 

Having gotten the general result, we would also like to inspect the 
continuous limit defined by 

We have 

where 

c ,s~O with cL, s L ~ a , b  (3) 

Nisland --9" Ncb e b(1 - t) _ ea(1 - t) 
a - b  (4) 

t= M/L 

In the continuous limit, the result of Eq. (4) differs from the zero- 
probe-length case only by a trivial scale factor 1 - t, which means if we plot 
Nis~ana (in units of G/L) against (1 - t)b for different values of (1 - t)a, we 
would get the same figure as in the t = 0 case. This is shown in Fig. 2. 
Therefore, reducing the ratio t is equivalent to increasing the coverage a 
and b. 

~7 

3 

4 6 8 10 

Coverage in Anchors, (l-t)b 

Fig. 2. The expected number  of islands (in units of G / L )  vs. coverage in anchors  (1 - t ) t  =- 

(1 - M / L ) ( N p L / G )  for various coverages in clones (1 - t ) a  -~ (1 - M / L ) ( N c L / G  ). Increasing 
the ratio t of the probe  length over the clone length is equivalent to decreasing both  the probe 
numbers  and the clone numbers.  
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u I 

I I 

!.1 

1 

0 

Fig. 3. 

3. EXPECTED COVERAGE OF THE G E N O M E  BY ISLANDS 

Second, we calculate the expected fraction of genome length covered 
by islands, which should serve as a measure of the progress of a mapping 
project. If we define ri for i = 0 ,  1 ..... m (if L > 2 M ,  m = 4 )  5 to be the 
probability that an arbitrary base pair position is covered by i islands, 
it is obvious, by definition, that 

r o + r l + R 2 = l  where R 2 -  ~ r i  (5) 
i~>2 

To compute #, the expected fraction of genome length covered by the 
islands, it is easiest to compute ro, the expected fraction not covered by any 
islands first. 

Take an arbitrary position 0; then the probability that 0 is not covered 
by any clones is ~L and the probability that 0 is covered by one 
unanchored clone is Lc{ ,  L I ~ L - - M + I .  To calculate the probability q that 0 
is covered by more than one unanchored clone, we assume (see Fig. 3) 
the left end of the leftmost anchored clone covering 0 is at u (which 
means 1 -  L ~< u ~< - 1 )  and the right end of the rightmost anchored clone 
covering 0 is at v (which means u + L ~< v ~< L -  1); therefore q is given by 

--1 L 1 
q =  ~ ~ c2g . . . .  M + 2?2L- 2 + u - v  

u--1 L v = u + L  

= c ~ _  M+~ ( L -  1 ) ( s - c ) ~  ~-~ + ~(~L- ,  _ e~ -~ )  

( c - s )  2 

Summing up these three possibilities, we get 

ro = 6L + L C 6 L -  l gL -- M + 1 + q (6) 

5 We t h a n k  Prof. Q. Yu for po in t ing  this  out  to us. 



616 Zhang and Marr 

& 

a=5,t= 01 

a , t= l  

/ a=l ,t=.01 

,t= 1 

/ 

Ooverage Fn anchor b 

Fig. 4. The expected fraction of genome coverage by islands vs. coverage by islands vs. 
coverage in anchors b = - N p L / G  for various clone coverage a = - N c L / G  and length ratios 
t ~ 1 - M / L .  For a fixed clone coverage a, increasing the length ratio t reduces the fraction of 
genome coverage, with its largest effect occurring about b = 2. 

which, in the continuous limit, becomes 

ro~e ~+ae (a+(1 t)b) a2(a-b+l) a2 ~ - - ~  e-(~,+(1-t)b)+~.ff_~_~e (2 ,)b (7) 

The fraction (rl + R2) of genome covered by islands is, of course, 
1 - r  o. This is plotted in Fig. 4 for the continuous limit; we see that 
reducing the ratio t would increase the effective coverage of the genome by 
islands. Previous results maybe obtained by setting t = 0. 

4. EXPECTED FRACTION OF G E N O M E  COVERED BY M O R E  
T H A N  ONE ISLAND 

In this section, we first calculate the probability R2 (defined above) 
that an arbitrary position 0 is covered by more than one island. Due to the 
discrete nature of the problem, it turns out that this calculation is very 
tedious. But the idea is fairly simple and each computation is never more 
than a straightforward evaluation of some geometric series. We shall 
illustrate the idea and omit intermediate steps. 

In order for the position 0 to be covered by at least two islands (see 
Fig. 5) (a) there has to be a rightmost clone of the left island, starting at 
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- X  

I I 

Y 

V 
I I 

0 

Fig. 5. 

- u  and covering 0; (b) there has to be a leftmost clone of the right island, 
ending at v and covering 0; (c) there has to be a rightmost probe of the left 
island, starting at - x  and anchoring the rightmost clone of the left island, 
but not anchoring the right island; (d) there has to be a leftmost probe of 
the right island, ending at y and anchoring the leftmost probe of the right 
island, but not anchoring the left island. The positions of the two probes 
can vary according to 1 ~< x, y ~< L - 1 ,  which has to be subjected to the 
condition x +y~> M because they cannot overlap themselves. Once the 
probe positions are fixed, the rightmost clone of the left island can only 
vary according to m l - - m a x ( x , L - y ) < ~ u ~ m 2 - = m i n ( L  - 1 , x + L - M ) ,  
which specifies that it contains the left probe but not the right and it covers 
the proposition 0; similarly, the leftmost clone of the right island can only 
vary according to 

m 3 - m a x ( y ,  L -  x) <~ v <~ m 4 - m i n ( L - -  1, y + L -  M) 

by symmetry. Therefore, the probability that the position 0 is covered by 
two islands can be expressed as the following sum: 

L 1 m2 rn4 
R2=C2S2 2 2 2 ~x+y M~v+u L m a x ( 0 , , ~ + y - - L )  ( 8 )  

x, y= l u=ml v=m3 
M<~x+y 

The factors in front of the summation say that there are two clones and 
two probes. The first factor in the summand says that there can be no other 
probes in between the two probes, because those two probes are the out- 
most probes of the two islands, by our assumption. The second factor in 
the summand says that there can be no other clones in between the two 
clones if they cannot be fit in between the two probes, otherwise they 
would either become the outmost clones of the islands or link the two 
islands, hence contradicting the assumption. The singularity domains in the 
x, y summation plane are indicated in Fig. 6, they depend on the lengths 
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Fig. 6. 

Y 

L-1  

M-1 

0 1 M-1 L-1 

The singularities in the (x, y) domain (i.e., the summand has to change across each 
singularity line). 

L and M. To  avoid  the pathological  complicat ions ,  we assume L > M >  2; 
then, after carrying out  the u, v sums, we are left with 

L - - I  ~x+y--M 
R2 = S2 E oM 

x ,y~l  
M<~x+y<L 

_ _ ( ~ L  y__~m2+l)(~L x__  ~ m 4 + l )  

s 2 L 1 

x,y=l 
L~x+y 

= 81--~ $2-~- $3--~ $4-~ S 5 

This sum has been d e c o m p o s e d  into five terms as indicated above; their 
definitions and the results are given in the Appendix.  

In the cont inuous  limit, we find (remembering that 0 < t = M/L < 1/2) 

R2 --+ b ( 2 a -  b + t( 3ab-(a - b) 22a2 - b2) + 2a + b + bt(a + b !) + b) 2 0 t)a 

a 
_ _ e - ( a + t b )  

+ (a + b) 2 
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ab  - b 2 - a a 2 
+ a  e - ( 1 - t ) b  -I 

( a - b )  2 ( a - b )  2 
_ _  e - - ( 2 - t ) b  + 2e-( i  - , ) ( a + b )  

a 2 
- 2 ~ e - ( ( 1  - t)a+b) 

ab  2 - a 2 - a2b  + 4 a b  - 2 b  2 + 2 a b t ( a  - b )  e - ( ' +  (1 -nb) 
+ (9) 

(a - b) 2 

With R2 calculated, the expected fraction of genome covered by more 
than one island is G R 2  [the expected fraction of genome covered by exactly 
one island is equal to G(1 - r o - R 2 ) ] .  They agree with the previous results 
when t = 0. 

5. E X P E C T E D  SIZE O F  A N  I S L A N D  

To calculate the mean size of an island, we use the approach of Ewens 
e t  a/., (7) which begins with the following two calculations: 

5.1. M e a n  D i s t a n c e  b e t w e e n  P r o b e s  on t h e  S a m e  Is land dl  

Suppose that the right end of a probe is at 0 and the right end of the 
rightmost clone anchored by the probe is at y;  conditioning on this event, 
the probability that the right end of a right nearest neighbor probe is at x 
is proportional to U g  - y .  Therefore, the mean distance dl between probes 
on the same island may be calculated as 

d l  ~O<~x<~y<~L_MXSxC--Y -- A (10) 

~ O ~ x < .  ~L-M ~*~-y B 

where 

A -  

B =  

( L - M +  1)(s L M+I 

[1 - (~/~)]2 1 - ( ~ / ~ )  

- e ~ - ~  ~ 7 ( 1 - x ~  ~ + ~ ) - ( L - M + I ) - -  

1 - ( i / ~ ) L - ~ + l  ~ M - L - 1  
- -  ( 1 -  ~ -  ~ +  ~) 

1 - (~/~) s 

1 
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5.2. Mean Dis tance f r om  the R igh tmos t  Probe on an Island to  
the R ight -Hand End of the Island d2 

This is calculated in a similar fashion and results in 

d2 = ~?,o <~y <~ L - M Y c6z- •-ysEy 
~,O<~y<~L--M C6L M ySffy 

1 L - - M + I  
= ( 6 / g ) - I  (Ug) c M + I - 1  (11) 

Any island will have some number i (i~> 1) of probes on it, and thus 
i -  1 "interprobe" distances. It will also have two other distances, to the left 
(right) of the leftmost (rightmost) probe. The mean island size l, using dl 
and d2 above, is thus 

l = d ~ E ( i -  1) + 2d2 + M -  1 (12) 

Now the mean of i is the mean number of probes on islands 
[Ns( 1 _ 6L-M1)] divided by the mean number of islands, Nislands, as before. 
So we may write Eq. (12) as 

l = d l ( N ~ ( 1 - c L  M+I) ) 1 + 2 d 2 + M -  1 
Nislands 

E t a=5,t= 01 

a=53=A 

i:o 
a=3,N,01 

; a=3,t=.l / 

a=3,t=.5 

0 2 4 6 8 10 
Coverage in anchors b 

Fig. 7. The expected length of an island (in units of L) vs. coverage in anchors b =- NpL/G 
for various coverages in clones a=-NcL/G and the lengths t -= l  M/L. For a fixed clone 
coverage a, increasing the length ratio t reduces the average island length. 
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The mean island size in the continuous limit is plotted in Fig. 7, it is 
obvious that reducing the ratio t results in increasing the length of islands. 
Previous results correspond to the case of t = 0. 

6. C O M M E N T S  

The mapping strategy discussed in this paper is a random one. We 
have assumed fixed clone and anchor sizes which correspond to the 
average sizes in real applications. In principle, one may assume Gaussian 
distribution of these sizes, and obtain analogous results as was done in the 
continuum case. (6) In order to improve the efficiency, recently a new non- 
random strategy has been proposed, tested in computer simulations, and 
implemented in real experiments. (I~ In this nonrandom strategy, instead 
of selecting anchors randomly from the genome, anchors are selected from 
both ends of an unlinked clone in a sequence way. Ideally it works as 
follows: (1) generate a library of random clones--DNA pieces of size L 
which can cover the genome five times on average; (2) take an arbitrary 
clone, make two proves of size M from its two ends, and link some other 
clones in the library by detecting whether they share the anchor sequences; 
(3) repeat the procedure 2 only with unlinked clones until all the clones are 
linked. In this way, islands can be built up very rapidly. Here the distribu- 
tion of clones and probes are highly correlated, although an approximate 
model (9) has been solved by using the hard-rod statistics ~2) (the random 
strategy corresponds to a mixture of idea gases) which agreed well with 
simulation and experiments in the applicable region; it is still a great 
mathematical challenge to formulate the exact model rigorously. 

A P P E N D I X  

& - s 2 ~ 
x , y = l  

M < ~ x + y < L  

s2 6 ( M -  1)6 L - M -  ( L -  1 ) g  L -  M 
= _ + s26g 

C - - S  

~L -- M __ ~L M 

(C - -  S)  2 

L 1 

$ 2  ~ - 2 s 2  2 g x + y  - M g m 2  

x , y =  l 
M < ~ x + y  

= - 2 s ( M -  1)e L - M + I + 2 ( e g ) L - M + I ( 1 - g M  1) 

6 L -  ~ ~L M 
+ 2s6g(1 - g o -  1 ) 

C - - S  
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L - - 1  
$3 ~ $ 2  E ~ x + y  M~L+min(O,x--M+l)+min(O,y  M + I )  

x ,y=  1 
M<~x+y<L 

+S/LgM[1 - ( L - 2 M +  1)g L 2M] 

+ e ~ i g  + ~ ( 1 - -  X~ ~ g )  + 2 S e  ~ -- ~ + l  e ~  - -  ( e ~ )  M 
1 - 5g 

6L M+2_~L+I 
_ 2sg L i 

C 

L 1 
$4  ~- $2 Z ~x + y-- M 

x , y=  l 
L<~x+y 

= s ( L _ _ I ) g L - - M _ _ ~ L  M + I ( 1  __ ~L 1) 

L--1 
S5-----'$2 E ~x+y- -M~min(L  x , L - - M + l ) + m i n ( L  y,L M + I )  

x , y = l  
L<~x+y 

K1-Lgl-L~ M+3gc MS2( 1 - ~ M  1) 
= s2~L + I~L -- U __ L -___~1 + ~L __ 2~L - 

- s (~ -  s) ~ ) ~(~- =) 

1 _ g i - 1  M - -  1 
_.}_2s6L M + 2 ~ L - - M + I  _~_2s2~L+IgL M 

C - - S  C - - S  

+ 2s2~L -- M + 2~L -- M + 1 5M -- 1 _ ~M 
1 

(C - - S ) 2  
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